Quality RTOS & Embedded Software

 Real time embedded FreeRTOS RSS feed 
Quick Start Supported MCUs PDF Books Trace Tools Ecosystem


Queues, Mutexes, Semaphores...
[Inter-task communication and synchronisation]

[See also Blocking on Multiple RTOS Objects]

The FreeRTOS tutorial book provides additional information on queues, binary semaphores, mutexes, counting semaphores and recursive semaphores, along with simple worked examples in a set of accompanying example projects.

FreeRTOS Mutexes

Mutexes are binary semaphores that include a priority inheritance mechanism. Whereas binary semaphores are the better choice for implementing synchronisation (between tasks or between tasks and an interrupt), mutexes are the better choice for implementing simple mutual exclusion (hence 'MUT'ual 'EX'clusion).

When used for mutual exclusion the mutex acts like a token that is used to guard a resource. When a task wishes to access the resource it must first obtain ('take') the token. When it has finished with the resource it must 'give' the token back - allowing other tasks the opportunity to access the same resource.

Mutexes use the same semaphore access API functions so also permit a block time to be specified. The block time indicates the maximum number of 'ticks' that a task should enter the Blocked state when attempting to 'take' a mutex if the mutex is not immediately available. Unlike binary semaphores however - mutexes employ priority inheritance. This means that if a high priority task blocks while attempting to obtain a mutex (token) that is currently held by a lower priority task, then the priority of the task holding the token is temporarily raised to that of the blocking task. This mechanism is designed to ensure the higher priority task is kept in the blocked state for the shortest time possible, and in so doing minimise the 'priority inversion' that has already occurred.

Priority inheritance does not cure priority inversion! It just minimises its effect in some situations. Hard real time applications should be designed such that priority inversion does not happen in the first place.

Mutexes should not be used from an interrupt because:

  • They include a priority inheritance mechanism which only makes sense if the mutex is given and taken from a task, not an interrupt.

  • An interrupt cannot block to wait for a resource that is guarded by a mutex to become available.


Using a mutex to guard access to a shared resource.






[ Back to the top ]    [ About FreeRTOS ]    [ Privacy ]    [ Sitemap ]    [ ]


Copyright (C) Amazon Web Services, Inc. or its affiliates. All rights reserved.

Latest News

NXP tweet showing LPC5500 (ARMv8-M Cortex-M33) running FreeRTOS.

Meet Richard Barry and learn about running FreeRTOS on RISC-V at FOSDEM 2019

Version 10.1.1 of the FreeRTOS kernel is available for immediate download. MIT licensed.

View a recording of the "OTA Update Security and Reliability" webinar, presented by TI and AWS.


Careers

FreeRTOS and other embedded software careers at AWS.



FreeRTOS Partners

ARM Connected RTOS partner for all ARM microcontroller cores

Espressif ESP32

IAR Partner

Microchip Premier RTOS Partner

RTOS partner of NXP for all NXP ARM microcontrollers

Renesas

STMicro RTOS partner supporting ARM7, ARM Cortex-M3, ARM Cortex-M4 and ARM Cortex-M0

Texas Instruments MCU Developer Network RTOS partner for ARM and MSP430 microcontrollers

OpenRTOS and SafeRTOS

Xilinx Microblaze and Zynq partner